Module No.	Title of Module
10-MAT-MPDG2	Advanced Differential Geometry II
Recommended for	3rd semester of Int. Master Program Math. Phys.
Duration	1 Semester
Frequency	Every Winter Semester
Course types	 (1) Lecture "Advanced Differential Geometry II" (4 SWS) = 60 h in class + 90 h ind vidual studies = 150 h (2) Seminar "Advanced Differential Geometry II" (2 SWS) = 30 h in class + 120 h ind vidual studies = 150 h
Workload	10 LP = 300 h
Aims	After successful participation, the students are able to understand research articles this specialisation area of Differential Geometry. They can represent and explain the knowledge on concepts and terms in written form and orally on specific problems; ca solve typical model problems themselves and justify their approach as well as exter their expertise independently with the use of reference literature.
Contents	Contents belong to one of the specific fields of Differential Geometry:
	- Riemannian Geometry, or
	-Symplectic Geometry / Hamilonian Systems, or
	-Global Geometric Analysis
	To a) belong e.g.:
	 Riemannian comparison theory, distance functions, volume comparison, Ricci splitting theorem, rigidity theorems
	-Closed geodesics: existence and geometric properties
	To b) belong e.g.:
	- Existence, invariants and obstructions of symplectic manifolds
	- Symplectic reduction, momentum map, Hamiltonian systems
	- Symplectic capacities, non-squeezing theorem,
	- Symplectic rigidity
	- Methodology of J-holomorphic curves and their modul spaces, Floer theory
	To c) belong e.g.:
	- Geometry of spinors
	 Differential operators: Construction and spectral geometry of Dirac and Laplace operators, Weitzenböck technique
	Lectures and seminars will be held in English. Students' performance has to be in English as well.
Prerequisites	None

Literature	H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhauser, 1994
	J. Jost, Riemannian Geometry and Geometric Analysis, Springer, 7th ed., 2017
	H.B. Lawson, M.L. Michelsohn, Spin Geometry, Princeton Univ. Press, 1989
	P. Petersen, Riemannian Geometry, Springer, 3rd ed., 2017
	D. McDuff, D. Salamon: Introduction to Symplectic Topology, Oxford Univ. press, 3rd ed., 2017
	D. McDuff, D. Salamon: J-holomorphic Curves and Symplectic Topology, AMS, Provid- ence, 2012
Examinations	Oral exam of 25 min
	Oral lecture (60 min.) + written report (4 weeks).
Requirements	attendance at lecture "Advanced Differential Geometry II" (4 SWS) participation in seminar "Advanced Differential Geometry II" (2 SWS)